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MODEL OF A NONEQUILIBRIUM TWO-PHASE ZONE 

INTO ACCOUNT CONVECTION OF A BINARY MELT 

A. No Cherepanov 

T A K I N G  

UDC 669.18-412:620.18:536.421.4 

A mathematical model of a two-phase dendrite zone was constructed in [I, 2] for nonequilibrium crystal- 
lization of a binary melt. In t,his case, the change in the density of the melt in the phase transformation process 
was neglected and the melt was assumed to be stationary. It is evident that when a crystal grows, as a result 
of settling phenomena, a flow of the liquid phase, oriented toward the crystal, must exist in the melt. This 
effect was examined in [3, 4] for crystallization of pure metals. It is shown therein that the flows of the melt 
arising affect the temperature and pressure field in the liquid phase~ In the process of nonequilibrium crystal- 
lization of a binary melt, these flows will also affect the distribution of the admixture in the liquid phase and, 
therefore, the structure of diffusion overcooling as well. Since the .kinetics of the growth and morphology of 
dendrites in the two-phase zone are determined by overcooling of the melt, this effect will affect the develop- 
ment of the two-phase zone as a whole, as well as the nature of the chemical inhomogeneity and formation of 

porosity in the ingot. 

In what follows, based on phenomenological assumptions, we formulate a mathematical model of heat and 
mass transfer processes in the two-phase zone of a solidifying binary alloy talcing into account the kinetics of 
growth of dendrites and the density discontinuity along the phase separation surface. 

Let us examine directed crystallization of a binary melt in the presence of a two-phase zone. The scheme 
of the physical model is illustrated in Fig. i. We assume that the two-phase zone consists of homogeneous den- 
drites with a column (~ = I) or plate (u - 0) form, while their growth velocity along the normal to the surface 
of the crystal is an exponential function of the local overcooling AT: 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 77-82, 
September-October, 1981. Original article submitted September 12, 1980. 
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v,, = K ( a T ) = .  (1) 

B a s e d  on this  r e l a t i o n ,  equa t ions  a r e  ob ta ined  in [2] fo r  the  k ine t i c s  of the  t h r e e - d i m e n s i o n a l  g rowth  of d e n -  
d r i t e s ,  which ,  t ak ing  into accoun t  the  e f fec t  of the  change  in l o c a l  va lue s  of the p r e s s u r e  p and the d y n a m i c  
head Pv = pe2V2n/2 on the t e m p e r a t u r e  of the  l i q u i d u s , t a k e  the f o r m  [for y = R(x,  t)] 

Rt = K I f 1  + R~ IT, (C) (1 + P~'/• - -  TI", p~:=2"ok~ + e A p  - -  p,,; (2) 

~l t - -  Ko[T~(C)( l  + pz/• ) I,=~1, 2vkT==R~.~/(o ' - - W R o ,  

: V ]  + <' ,  (3) 

w h e r e  2R is  the  t r a n s v e r s e  s i z e  of the  d e n d r i t e ;  ~ is  the s u r f a c e  t ens ion ;  k r is  the  a v e r a g e  loca l  c u r v a t u r e  of 
the  d e n d r i t e  s u r f a c e ;  ~0 is  the  l a t en t  hea t  of fus ion;  Ps and p a r e  the  d e n s i t i e s  of  the  so l id  and l iquid  p h a s e s ,  
r e s p e c t i v e l y ;  C is  the  c o n c e n t r a t i o n  of  the  d i s s o l v e d  m i x t u r e ;  TI(C) is  the  e q u i l i b r i u m  t e m p e r a t u r e  of the  l i q -  
u idus  wi th  PB - 0; ~f(t) is  the  c o o r d i n a t e  of the f r o n t  of the t w o - p h a s e  zone;  K and K 0 a r e  Mnet ic  c ons t an t s ;  e = 
(Ps - P ) / P ;  the p r i m e  i n d i c a t e s  a d e r i v a t i v e  wi th  r e s p e c t  to the  l o w e r  index.  

Equa t ions  (2) and (3) depend  on the  l o c a l  v a l u e s  of t e m p e r a t u r e ,  c o n c e n t r a t i o n ,  and p r e s s u r e ,  which  a r e  
d e t e r m i n e d  by the  equa t ions  of c o n v e c t i v e  hea t  and m a s s  t r a n s f e r  in the  l iquid  phase  

cp(OTIOt -}- v v T  ) = div()WT); (4) 

8C/0t + vvC = div(DvC); (5) 

by the equations of thermal conductivity and diffusion in the solid phase 

cpOT/Ot --  div(~vT); 

OC/Ot = div(DvC); 
(6) 
(7) 

and by the Navier-Stokes and continuity equations for an incompressible fluid 

p[Ov/Ot + (vv)v] = --VP + div-c + 0g, "~ = pIVv + (VVF]; (8) 
d i v  v = 0 ,  (9) 

where v = {u, w} is the velocity vector of the melt; r is the viscous stress tensor; (~7v)T is the transposed 
dyad; g is the acceleration of gravity vector; k, c, D, and # are the coefficients of thermal conductivity, heat 
capacity, diffusion, and viscosity, respectively, assumed to be independent of temperature. Since the two- 
phase zone is assumed to consist of uniform dendritic cells, it is sufficient to find the solution in the region 
f}~[0 ~ x<o% 0 ~ y ~. d/2] with appropriate initial and boundary conditions, as well as the balance relations 
along the phase separation boundary y = R(x, t): 

,. at I _ } at 
l, a--Z[~,~-o '~-,~ y=R+o = •  (10) 

�9 D~~ ::(l__k§ (II) D ~Con [ ly=~-o-  y=R+O 

u sin o~ + w cos o~ = --evn, (12) 

w h e r e  d is  the d i s t a n c e  be tween  the  i n i t i a l  axes  of the d e n d r i t e s ;  0 /On  is the  d e r i v a t i v e  a long  the n o r m a l  n; 

is  the  ang le  be tween  the n o r m a l  n and the  y axis  ( see  F ig .  1). 

In o r d e r  to c l o s e  the s y s t e m  of equa t ions  p r e s e n t e d  above ,  i t  is  n e c e s s a r y  to d e t e r m i n e  the quan t i t y  d. 
E x p e r i m e n t a l  and t h e o r e t i c a l  s t u d i e s  [5, 6] i n d i c a t e  that  the  i n t e r d e n d r i t i c  d i s t a n c e  d depends  on the p r o d u c t  
of the  t e m p e r a t u r e  g r a d i e n t  G along the c r y s t a l l i z a t i o n  f ron t  in the  m e l t  and the c r y s t a l l i z a t i o n  v e l o c i t y  v. 
This  d e p e n d e n c e  has  the  f o r m  

d = b(Gv)-*~ (13) 

w h e r e  0 -< s -< 0.5; b is  s o m e  c o n s t a n t ,  c h a r a c t e r i s t i c  fo r  the  m e l t  be ing  s tud i ed .  F o r  th i s  r e a s o n ,  in wha t  
fo l l ows ,  we  wi l l  a s s u m e  fo r  d a d e p e n d e n c e  of  the  f o r m  (13), t ak ing  G and v to m e a n  the t e m p e r a t u r e  g r a d i e n t  
in the  m e l t  a long the f ron t  of the  t w o - p h a s e  zone  and the v e l o c i t y  of the  f r o n t ,  r e s p e c t i v e l y ,  a t  the t i m e  t = t o 
t aken  as  the  i n i t i a l  t i m e ,  f o r  w h i c h  the cond i t ion  of s t a b i l i t y  of the  t w o - d i m e n s i o n a l  f r o n t  [5] i s  no l o n g e r  s a t i s -  
f ied .  In th is  c a s e ,  the  change  in the  d e n s i t y  of d e n d r i t e s  n o = 22u/uUd 1+~ due to the a p p e a r a n c e  of new d e n -  
d r i t e s  o r  s u p p r e s s i o n  of  e x i s t i n g  d e n d r i t e s  is  not  t aken  into  account .  
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The model constructed descr ibes  dynamic phenomena in the two-phase zone: kinetic growth of dendri tes ,  
microsegrega t ion  of impuri t ies ,  change in t empera ture ,  diffusion overcooling,  and p res su re  fields in the den- 
dri t ic  ceil ,  which permits  studying theoret ical ly the formation of the initial s t ruc ture  and chemical  and physical 
inhomogeneities with crys ta l l iza t ion of binary melts.  The equations obtained represen t  a sys t em of two-dimen-  
sional nonlinear part ial  differential equations with complicated boundary conditions whose solution involves 
well-known mathematical  difficulties. For  most  real  p rocesses  of crysta l l izat ion of ingots, an extended den- 
drit ic t~vo-phase zone is charac te r i s t i c .  The distance between the axes of the dendrites is usually 10-100 #m. 
For  this reason,  for a macroscopic  investigation, it is useful to average Eqs. (4)-(9) over the c ross  section of 
a dendritic cell,  taking into account conditions (10)-(12) and the s y m m e t r y  conditions for y = 0 and y = d / 2 .  In 
ca r ry ing  out the averaging,  we will assume that the extent of the zone L great ly  exceeds the s ize  of a cell  (L >> 
d), while the average magnitudes of the concentrat ion in the solid C I and liquid C2 phases are  related to each 
other just as the distributed quantities on the phase separat ion boundary (Ca = kC2). Due to the continuity of 
t empera ture  on transi t ion through the phase boundary, its average value in the solid and liquid phases must be 
equal (T~ = T2). Carrying out the necessa ry  computational s teps,  we wri te  the eqhations obtained in the fo rm 

aT a7 a @ aT) a~7 (14) 
Cv ~ + cv~Su Ox oz ~ + Xo (i + 8) p "--E'; 

o (_ oC', (15) 
0 l ( k ~  + s) c} + @ (s.c) = ~ ~.  ~z);  ot 

~ + ~  - o~ K~ i ~ + "  o ~ - ~ - ~ ) ;  (16) 

os o (us), (17) 
8 a t  ox 

where �9 = (2R/d) l+v, S : 1 - 4~ are the c ross  sect ionof  the solid and liquid phases,  respect ively;  c V = c l P ~  + 
c2p2S; cv2 = c2P2; X = hl/~ + k2S; D = kDl~ + D 2 S .  In deriving Eq. (16) f rom (8), we assumed that the viscous 
frict ion force is proport ional  to the averaged velocity of the melt in the dendritic cell,  which corresponds  to 
the assumption that Reynolds number Re is small .  It is possible to make such an assumption,  since the flow 
velocity of the melt in the zone is not high (I u[ ~ ev and for v = 10 -3 m / s e c ,  e ~ 0.1, d ~ 10 -4 m, v N 10-~ m2/ 
sec,  Reynold's  number is Re = ]u Id /v  ~ 10-2). It can also be shown that the terms on the left and the third 
t e r m  on the right of the equal sign in (16) can be neglected compared to the second t e rm and Eq. (16) can be 
written in the form of Darcy ' s  law u = - [Kp(S ) /# ] (0p /0x ) ,  used in studying t ranspor t  phenomena in cap i l l a ry-  
porous media, where Kp(S) is the permeabil i ty  of the two-phase zone, which depends on its s t ruc tu re  [7, 8]. 
Equations (14)-(17) together with (2), (3), and (13) descr ibe  the macroscopic  t ranspor t  phenomenona and the 
growth kinetics of dendrites with directed crys ta l l iza t ion of the melt. For  a macroscopic  analysis of pro-  
cesses  occur r ing  in the two-phase zone, in the f i rs t  approximation it is possible to neglect the effect of p res -  
sure  and curvature  on the t empera tu re  of the liquidus, while Eqs. (2) and (3) can be represented  in the fo rm 

I , ,,2] 1/~ 
S ' t = - - K  4(i+v)--~(l--S)~vi(*+v)+(S:)d2 J [T~(C)--T] "~, 

x ~ [~, ~11; (18) 

~']t -- K0 [Tz (C) --  Tl2~ (19) 

In the general  case  of three-d imensional  crysta l l izat ion,  we will examine the two-phase zone as a d is -  
persed medium, consist ing of a heterogeneous mixture of c rys ta ls  with a plate-like (u = 0) or  cyl indrical  (v = 
1) form,  growing in an overcooled melt. In order  to obtain the macroscopic  equations, in this case ,  it is 
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necessary to average the three-dimensional transport equations in a small volume of the two-phase zone, 
whose linear size is much greater than the characteristic size of the crystal cell, but much less than the ex- 
tent of the two-phase zone. The balance relations (!0)-(12)mustbe taken into account, as above, along the 

phase separation surface. As a result of such averaging, we obtain the macroscopic equations of convective 
heat and mass transfer with nonequilibrium crystallization of a binary melt: 

07 
c v - j 7  + cv2S (vV) T div (~,VT) x 0 (I + 8) OS = -- 9 -~-; (20) 

a 
ot {[k q- (t - -  k) S] C} = div(DVC - -  SvC); (21) 

9 [ ~ + ( v V ) v ]  = - - V p - - - - - C - - ~  v + d i v %  
�9 . K p  ( 8 )  

K p ( S )  ~ co for S == 1; (22) 

~ ~.-~-St =d iv (Sv) ,  S~-~t for x ~ 1 ,  ~ S---~0 for x < ~ , .  (23) 

U s i n g  K o z e n i ' s  t h e o r y  [9], we find tha t  Kp = a k 2 U ( d / 2 q 3 2 S 3 / ( 1  - S) ~ ,  w h e r e  ~ = u(2 - u), q~ is  the  r a t i o  of the  
surface area of a real dendrite to the surface area of the crystal being examined, and a k is Kozeni's constant. 

Equation (22) is a superposition of Darey's law and the equation for viscous flow of an incompressible 
fluid and can be used over a wide range of variation of the coefficient of permeability of the zone. The system 

(20)-(23) is closed by Eq. (18), while relation (19) now takes the form ~}t/x/l + ~'r~ + ~f2z = K~176 z)" 

The well-known equations for a quasiequilibrium two-phase zone, taking into account hydrodynamic processes, 
follow from the system of equations obtained in [8], if the diffusion in the solid phase (D I --- 0) and overcooling 
in the zone (AT - 0) are neglected, while Eq. (22) is written in the form of Darcy's law. An exception is Eq. 

(21), which differs from the corresponding equation in [8] by the presence of the term k(l - S)3C/3t and for 
v - 0 coincides with the equation of mass transfer obtained in [I0]. 

In order to compare the theoretical results following from the model proposed with well-known experi- 
mental data, we examine the problem of directed crystallization of an overcooled binary melt for the case of 
constant velocity of the zone. Under certain simplifying assumptions [2], the solution of the problem can be 
represented in analytic form, establishing a dependence between the crystallization velocity v and the over- 
cooling of the melt | as well as between the size of the dendritic cell d and the velocity v. In terms of di- 
mensionless quantities, these dependences have the form 

B ( O ~  - -  v)~v 2~ + v(20,0 - -  ~) - -  ~f[B(O~ - -  v ) ~ v ~ - - v ~ P +  4B7(0~ - -  v)~v2(i+,)=0, 

d = [bl(O~ - -  v)~v ~']-~, (24) 

w h e r e  B = A~(~  - -  k)b~; v - +  v/KoTto; O~ = (Tic - -  T~)/Tzo;  b 1 = (aTzo)~/b(KoTzo/a)'--2~; fl = (T_4 - -  Tzo)/Tzo; 

• 2 1 5  7 = i q - •  a n d A = K / K  0. 

A c o m p a r i s o n  of t h e o r y  wi th  e x p e r i m e n t a l  d a t a  ob ta ined  fo r  b i n a r y  a l loys  Sn + 2% Bi (by we igh t ) ,  Sn + 
i ' 0.5% Bi (by we_ght) [11] (curves  1, 2, r e s p e c t i v e l y ) ,  and Ga + 2% In (by weight)  [12] ( curve  3) is  p r e s e n t e d  in 

F ig .  2. The p h y s i c a l  p a r a m e t e r s  w e r e  s e t  a c c o r d i n g  to [13, 14]. The va lue  of the  k ine t i c  c o e f f i c i e n t  K 0 was  
a s s u m e d  equal  to 2, 1.6,  and 5 fo r  the  f i r s t ,  s e c o n d ,  and t h i r d  a l l o y s ,  r e s p e c t i v e l y .  The p a r a m e t e r  B was  
d e t e r m i n e d  f r o m  one of  the  points  c o r r e s p o n d i n g  to the e x p e r i m e n t a l  c u r v e .  

In the  r e g i o n  wi th  high o v e r c o o l i n g  (ATop > A T * ,  w h e r e  A T ~  = T/0 - T~) ,  the  t h e o r e t i c a l  c u r v e s  c a l -  
c u l a t ed  fo r  s = 0 (sol id  l ines )  a g r e e  w e l l  w i th  e x p e r i m e n t .  F o r  low o v e r c o o i i n g  (AT~ < A T * ) ,  c u r v e s  c o r r e -  
spond ing  to the  va lue  s = t / 3  (dashed l ines )  a g r e e  b e t t e r  w i th  e x p e r i m e n t .  F r o m  h e r e ,  i t  m a y  be conc luded  
tha t  f o r  low o v e r c o o l i n g  of  the  m e l t  (low c r y s t a l l i z a t i o n  v e l o c i t i e s ) ,  the  c e i l  s i z e  d depends  both  on the s t a t e  
of the  m e l t  and on the r a t e  of coo l i ng  a c c o r d i n g  to Eq.  (13). F o r  high o v e r e o o l i n g  [ATop > A T * ,  v > v (ATop)], 
the  quan t i ty  d is  m a i n l y  d e t e r m i n e d  by the  s t a t e  of the  m e l t .  The d e p e n d e n c e  v on A T ~  f o r  A T ~  ~ ~o a p p r o a c h e s  
a l i n e a r  d e p e n d e n c e  and is  d e t e r m i n e d  by the equa t ion  v = KoAT~o. 

In s tudy ing  the  d e p e n d e n c e  of the  i n t e r d e n d r i t i c  d i s t a n c e  on the c r y s t a l l i z a t i o n  v e l o c i t y  def ined  by Eqs .  
(24), i t  i s  c o n v e n i e n t  to r e p r e s e n t  th is  e x p r e s s i o n  in the  f o r m  d / b 1 ,  wh ich  does  not  con ta in  the  e m p i r i c a l  c o n -  
s t a n t  bt ,  depend ing  on the s t a t e  of the m e l t .  F i g u r e  3 i l l u s t r a t e s  th is  d e p e n d e n c e  (in d i m e n s i o n a l  q u a n t i t i e s )  
fo r  the  a l loys  Sn + Bi ( curve  1) and Ga + In (curve  2). In a c c o r d a n c e  wi th  the  p r e c e d i n g  c o n c l u s i o n ,  the  index 
s was  c h o s e n  as s = 1 / 3  fo r  v -< 10 and s = 0 fo r  v > 10, w h e r e  v is  in c m / s e e .  As  is  e v ide n t  f r o m  the g r a p h s ,  
the  quan t i ty  d r a p i d l y  d e c r e a s e s  in the i n t e r v a l  0 -< v < 10 and then a s s u m e s  s o m e  f in i t e  v a l u e ,  c o r r e s p o n d i n g  
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to the rapid (kinetic) stage in the growth of dendrites. The decrease in d with an increase in v agrees quali- 
tatively with experimental data [5, 15] on the reduction of the structure of the solidified alloy with increasing 
crystallization velocity. 

The author thanks V. E. Nakoryakov and V. I. Yakoviev for useful discussions of this work. 
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