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MODZL OF A NONEQUILIBRIUM TWO-PHASE ZONE TAKING
INTO ACCOUNT CONVECTION OF A BINARY MELT

A. N. Cherepanov UDC 669.18-412:620.18:536.421.4

A mathematical model of a two-phase dendrite zone was constructed in [1, 2] for nonequilibrium crystal-
lization of a binary melt. In this case, the change in the density of the melt in the phase transformation process
was neglected and the melt was assumed to be stationary. It is evident that when a crystal grows, as a result
of settling phenomena, a flow of the liquid phase, oriented toward the crystal, must exist in the melt. This
effect was examined in [3, 4] for crystallization of pure metals, It is shown therein that the flows of the melt
arising affect the temperature and pressure field in the liquid phase. In the process of nonequilibrium crystal-
lization of a binary melt, these flows will aiso affect the distribution of the admixture in the liquid phase and,
therefore, the structure of diffusion overcooling as well, Since the kinetics of the growth and morphology of
dendrites in the two-~phase zone are determined by overcooling of the melt, this effect will affect the develop-
ment of the two-phase zone as a whole, as well as the nature of the chemical inhomogeneity and formation of
porosity in the ingot.

In what follows, based on phencmenoclogical assumptions, we formulate a mathematical model of heat and
mass transfer processes in the two-phase zone of a solidifying binary alloy taking into account the kinetics of
growth of dendrites and the density discontinuity along the phase separation surface.

Let us examine directed crystallization of a binary meltf in the presence of a two-phase zone, The scheme
of the physical model is illustrated in Fig, 1. We assume that the two-phase zone consists of homogeneous den-
drites with a column (v = 1) or plate (v = 0) form, while their growth velocity along the normal to the surface
of the crystal is an exponential function of the local overcooling AT:
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vp, = K(AT)m, L
Based on this relation, equations are obtained in [2] for the kinetics of the three~-dimensional growth of den-
drites, which, taking into account the effect of the change in local values of the pressure p and the dynamic
head py = pelvh /2 on the temperature of the liquidus, take the form [for y = R(x, t)]
’ ’2
Ry =k V14 R, (CY(X + pxineps) — FI™,  ps==2¥0k, 4- eAp — py; @)
En = Ko IT1(€) (1 + pafngp) — T2, 2%k, = Rix/0® — v/Ra,

o=V 1+ R &Y

where 2R is the transverse size of the dendrite; o is the surface tension; ky is the average local curvature of
the dendrite surface; n; is the latent heat of fusion; pg and p are the densities of the solid and liquid phases,
respectively; C is the concentration of the dissolved mixture; T;(C) is the equilibrium temperature of the lig~-
uidus with py = 0; &(t) is the coordinate of the front of the two-phase zone; K and K, are kinetic constants; & =
{pg — p)/p; the prime indicates a derivative with respect to the lower index.

Equations (2) and (3) depend on the local values of temperature, concentration, and pressure, which are
determined by the equations of convective heat and mass transfer in the liquid phase

ep(0T(0t + vyT) = div(Ay7); 4)
aclat +- vyC = div(DyC); (5)

by the equations of thermal conductivity and diffusion in the solid phase

cpdT/ot = div(AyT);
acClat = div(DyC0); (7)

and by the Navier—Stokes and continuity equations for an incompressible fluid

ploviot 4 (vy)v] = —yp + divt +pg, © = plyv + (yv)rl; 8)
divv = 0, )

where v = {u, w} is the velocity vector of the melt; T is the viscous stress tensor; v 7T is the transposed
dyad; g is the acceleration of gravity vector; A, ¢, D, and p are the coefficients of thermal conductivity, heat
capacity, diffusion, and viscosity, respectively, assumed to be independent of temperature, Since the two-
phase zone is assumed to consist of uniform dendritic cells, it is sufficient to find the solution in the region
Q[0 < z< 0, 0 < y << d/2] with appropriate initial and boundary conditions, as well as the balance relations
along the phase separation boundary y = R, t):

. or . 0T

"on ly—r-o~ " an ly=R+0 = o4 -e) pvns o

aC i ac 2 R .
“n y=k—o = on Iyxﬂ+0 =1 —k+ &) vyCly=ryo} a1
usin o + wcos a = —ev,, (12)

where d is the distance between the initial axes of the dendrites; 8 /8n is the derivative along the normal n; o
is the angle between the normal n and the y axis (see Fig. 1).

In order to close the system of equations presented above, it is necessary to determine the quantity d.
Experimental and theoretical studies [5, 6] indicate that the interdendritic distance d depends on the product
of the temperature gradient G along the crystallization front in the melt and the crystallization velocity v.
This dependence has the form

d = b(Gv)—s, (13)

where 0 < s =< 0.5; b is some constant, characteristic for the melt being studied. For this reason, in what
follows, we will assume for d a dependence of the form (13), taking G and v to mean the temperature gradient
in the melt along the front of the two-phase zone and the velocity of the front, respectively, at the time t = ¢,
taken as the initial time, for which the condition of stability of the two-dimensional front [5] is no longer satis-
fied. In this case, the change in the density of dendrites n; = 2%Y/ 7¥a!*" due to the appearance of new den-
drites or suppression of existing dendrites is not taken into account.
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The model constructed describes dynamic phenomena in the two-phase zone: kinetic growth of dendrites,
microsegregation dfimpurities, change in temperature, diffusion overcooling, and pressure fields in the den-
dritic cell, which permits studying theoretically the formation of the initial structure and chemical and physical
inhomogeneities with crystallization of binary melts. The equations obtained represent a system of two-dimen-
sional nonlinear partial differential equations with complicated boundary conditions whose solution involves
well-known mathematical difficulties. For most real processes of crystallization of ingots, an extended den-
dritic two-phase zone is characteristic. The distance between the axes of the dendrites is usually 10-100 um.
For this reason, for a macroscopic investigation, it is useful to average Eqs. (4)-(9) over the cross section of
a dendritic cell, taking into account conditions (10)-(12) and the symmetry conditions fory =0 andy =d/2. In
carrying out the averaging, we will assume that the extent of the zone L greatly exceeds the size of a cell (L >
d), while the average magnitudes of the concentration in the solid C; and liquid C, phases are related to each
other just as the distributed quantities on the phase separation boundary (C, = kCy). Due to the continuity of
temperature on transition through the phase boundary, its average value in the solid and liquid phases must be
equal (T, = Ty). Carrying out the necessary computational steps, we write the equations obtained in the form

cv%f—+cw5u‘;—§=—j;(h%)v”o““)f)%f—? o
L (k¥ + 8)C) 2 (SuC) = %(D %ﬁ‘) -
p(’g?—+u%)=“g—g_xp25)”+2'§f( %Z_) "
si—fz—aa?(uS)z 17)

where ¥ = 2R/d)!T¥, S =1 — ¥ are the cross sectionof the solid and liquid phases, respectively; cy = cyp ¥ +
CyS; Cy, = C2l; A =M¥ + NS; D = kD¥ + D,S. In deriving Eq. (16) from {8), we assumed that the viscous
friction force is proportional to the averaged velocity of the melt in the dendritic cell, which corresponds to
the assumption that Reynolds number Re is small. It is possible to make such an assumption, since the flow
velocity of the melt in the zone is not high (lul ~ ev and for v = 1073 m/sec, £ ~ 0.1, d~ 107" m, » ~ 107¢ m?/
sec, Reynold's number is Re =luld/v ~ 10™%). It can also be shown that the terms on the left and the third
term on the right of the equal sign in (16) can be neglected compared to the second term and Eq, (16) can be
written in the form of Darcy's law u =—[Kp(S) /u1@p/0x), used in studying transport phenomena in capillary-
porous media, where Kp(S) is the permeability of the two-phase zone, which depends on its structure [7, 81.
Equations (14)-(17) together with (2), (3), and (13) describe the macroscopic transport phenomenona and the
growth kinetics of dendrites with directed crystallization of the melt. For a macroscopic analysis of pro-
cesses occurring in the two-phase zone, in the first approximation it is possible to neglect the effect of pres-
sure and curvature on the temperature of the liquidus, while Egs. (2) and {3) can be repres ented in the form

’ 2 . ’ /2
Si— — K| S s (Sx)z]l (7:(0) — 11",

ze E, & (18)

En = Ko [T1(C) — T2, (19)

In the general case of three-dimensional crystallization, we will examine the two-phase zone as a dis-
persed medium, consisting of a heterogeneous mixture of crystals with a plate-like (v = 0) or cylindrical (v =
1) form, growing in an overcooled melt, In order to obtain the macroscopic equations, in this case, it is
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necessary to average the three-dimensional transport equations in a small volume of the two-phase zone,
whose linear size is much greater than the characteristic size of the crystal cell, but much less than the ex-
tent of the two-phase zone. The balance relations (10)~(12) mustbe taken into account, as above, along the
phase separation surface, As a result of stich averaging, we obtain the macroscopic equations of convective
heat and mass transfer with nonequilibrium crystallization of a binary melt:

CV% - opeS (WY T = div (AVT) — (1 + ) p oy 20)
(k- (1 — k) S1CY = div(DVC — Sv(): @1)
p[—a—t— +(vV)v| = —Vp— byt dive,
- ' P ©2)
Ey(8)=oco for §=1;
e _div (Sv), S=1 for 2=, S=0 fo z<E, 23)

ot

Using Kozeni's theory [9], we find that Kp = ag?v(d /2¢)28%/ (1 — 8)@, where @ = v — v), ¢ is the ratio of the
surface area of a real dendrite to the surface area of the crystal being examined, and gy is Kozeni's constant..

Equation (22) is a superposition of Darcy's law and the equation for viscous flow of an incompressible
fluid and can be used over a wide range of variation of the coefficient of permeability of the zone, The system
. . . ]
- J = _
(20)-(23) is closed by Eq. (18), while relation (19) now takes the form gft/ 1+ §E§7 + 5&2 Ko(AT)molx—fff(t,y,z)'

The well-known equations for a quasiequilibrium two-phase zone, taking into account hydrodynamic processes,
follow from the system of equations obtained in [8], if the diffusion in the solid phase (D; = 0) and overcooling
in the zone (AT = 0) are neglected, while Eq. (22) is written in the form of Darcy's law. An exception is Eq.
(21), which differs from the corresponding equation in [8] by the presence of the term k(1 — 8)8C /8t and for

v = ( coincides with the equation of mass transfer obtained in [10].

In order to compare the theoretical results following from the model proposed with well-known experi-
mental data, we examine the problem of directed crystallization of an overcooled binary melt for the case of
constant velocity of the zone. Under certain simplifying assumptions [2], the solution of the problem can be
represented in analytic form, establishing a dependence between the crystallization velocity v and the over-
cooling of the melt @, as well as between the size of the dendritic cell d and the velocity v. In terms of di-
mensionless quantities, these dependences have the form

BBy — v)w* + 120, — 1) — ¥V [B(Os — v)vB—12 | - 4By(0,, — v)sv2ita =0,

24
d = [5,(0, — v)sv*]-Y, @4
where B = AB(l — k)by; v — /KTy Op = (T1o — T/ T10; by = (@T10)/b(KoTrolay="; B = (s — Tio)/Tho;
% = %oleTro; 7 = 14 %/B(1 — k)3 and A = K/ K.

A comparison of theory with experimental data obtained for binary alloys Sn + 2% Bi (by weight), Sn +
0.5% Bi (by weight) [11] (curves 1, 2, respectively), and Ga + 2% In (by weight) [12] (curve 3) is presented in
Fig. 2. The physical parameters were set according to [13, 14]. The value of the kinetic coefficient K, was
assumed equal to 2, 1.6, and 5 for the first, second, and third alloys, respectively. The parameter B was
determined from one of the points corresponding to the experimental curve,

In the region with high overcooling (AT > AT%, where ATw = Tl T}, the theoretlcal curves cal-
culated for s = 0 (solid lines) agree well with experiment, For low overcoolmg (AT < AT«,), curves corre-
sponding to the value s = 1/3 (dashed lines) agree better with experiment, From here, it may be concluded
that for low overcooling of the melt (low crystallization velocities), the cell size d depends both on the state
of the melt and on the rate of cooling according to Eq. (13). For high overceoling [ATe > ATw, V>V (ATQO)]
the quantity d is mainly determined by the state of the melt. The dependence v on ATy for AT, — « approaches
a linear dependence and is determined by the equation v = KjATw.

In studying the dependence of the interdendritic distance on the crystallization velocity defined by Egs.
(24), it is convenient to represent this expression in the form d /by, which does not contain the empirical con-
stant b;, depending on the state of the melt. Figure 3 illustrates this dependence (in dimensional quantities)
for the alloys Sn + Bi {curve 1) and Ga + In (curve 2). In accordance with the preceding conclusion, the index
s was chosen as s =1/3 for v = 10 and s = 0 for v > 10, where v is in ecm/sec. As is evident from the graphs,
the quantity d rapidly decreases in the interval 0 = v < 10 and then assumes some finite value, corresponding



te the rapid (kinetic) stage in the growth of dendrites. The decrease in d with an increase in v agrees quali~
tatively with experimental data [5, 15] on the reduction of the structure of the solidified alloy with increasing
crystallization velocity.

11.
12.
13.

14,
15,

The author thanks V. E. Nakoryakov and V. 1. Yakovlev for useful discussions of this work,

LITERATURE CITED

A, N. Cherepanov, "Stationary kinetic model of the dendritic two-phase zone," Zh. Prikl. Mekh. Tekh.
Fiz., No. 6 (1979).

A, N. Cherepanov, "Kinetic model of the development of the two-phase dendrite zone in the presence of
directed crystallization of a binary melt," in: Crystallization and Processes Occurring in Crystallizers
[in Russian], Izd, ITF Sib. Otd., Akad. Nauk SSSR, Novosibirsk (1979).

G. Horvay, "The tension field created by a spherical nucleus freezing into its less dense undercooled
melt," Intern, J. Heat Transfer, 8, No. 2 (1965).

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ, Press (1959},

M. 8. Flemings, Soilidification Processing, McGraw-Hill, New York (1974).

1. L. Tyazhel'nikova and V. T, Borisov, "Crystallization of a cylindrical cell of a two-phase zone,"
Izv. Akad. Nauk SSSR, Metally, No. 5 (1970).

A, E. Sheidegger, Physics of Fluid Flow through Porous Media [in Russian], Gostekhizdat, Moscow
(1960). :

V. A, Zhuravlev, "Macroscopic theory of crystallization of melts," Izv. Akad. Nauk SSSR, Metally, No.
5 (1975).

A. V. Lykov, Heat and Mass Transfer [in Russian], Energiya, Moscow (1978).

N. A. Avdonin, "Theory of the generalized solution of the problem of crystallization of binary system,!
in: Applied Problems in Theoretical and Mathematical Physics [in Russian], Riga (1977).

V. V. Nikonova and D. E. Temkin, "Study of the kinetics of growth of dendrites in some binary melts !
in: Growth and Imperfection of Metallic Crystals [in Russian], Naukova Dumka, Kiev (1966).

V. T. Borisov and Yu. E. Matveev, "Kinetic regime in the development of the two-phase zone in a
binary metallic alioy,” Izv. Akad. Nauk SSSR, Metally, No, 3 (1977).

A, E. Vol, Structure and Properties of Binary Metallic Systems [in Russian], Fizmatgiz, Moscow (1959).
V. 8. Chirkin, Thermophysical Properties of Materials [in Russian], Fizmatgiz, Moscow (1959).

R. E, Jesse and H. F. J. I. Giller, "Cellular growth: the relation between growth velocity and cell size
of some alloys of cadmium and zine," J. Crystal Growth, 7, 348 (1970),



